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Abstract

In this paper, we use the kernel method to estimate sliced average variance estimation (SAVE) and
prove that this estimator is both asymptotically normal and root n consistent. We use this kernel estimator to
provide more insight about the differences between slicing estimation and other sophisticated local smoothing
methods. Finally, we suggest a Bayes information criterion (BIC) to estimate the dimensionality of SAVE.
Examples and real data are presented for illustrating our method.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of regression analysis is to understand how the conditional distribution of the response
Y given a p-dimensional predictor vector X = (X1, . . . , Xp)T depends on the value assumed
by X. Since in many statistical applications the dimension p is large, the statistical analysis
becomes difficult. Therefore, it is very important to reduce the dimension p without much loss of
information on regression.This has been achieved through the development of sufficient dimension
reduction methods. A case in point is the dimension reduction subspace [3,4] which is defined as
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the column space of any p × K (K �p) matrix B such that
Y⊥⊥ X|BT X, (1.1)

where “⊥⊥" stands for independence. This means that BT X is a sufficient statistic for the regression
of Y on X. The central dimension reduction (CDR) subspace [4], indicated with SY |X, is defined
as the intersection of all dimension reduction subspaces satisfying (1.1). Throughout this article,
we assume that CDR space exists unless stated otherwise. Sliced Inverse Regression (SIR) [12]
and Sliced Average Variance Estimation (SAVE) [7,5] are two promising tools for identifying and
estimating the CDR subspace. SIR uses the mean regression of X given Y , and SAVE is based on
the conditional variance of X given Y . To estimate the SIR matrix and then CDR space, Li [12]
proposed a simple and useful estimation scheme which has become one of the standard methods
in this area. The idea is to divide the whole space of Y into several slices and then to estimate the
SIR matrix through the average of sample covariance of X in each slice. This slicing estimation
method can also be applied to estimate the SAVE matrix (see, e.g. [7]).

The consistency of this slicing estimation is clearly of importance. Hsing and Carroll [11] and
Zhu and Ng [24] proved the asymptotic normality and the root n consistency of the SIR matrix
estimator when the number of data points in each slice, say c, ranges from 2 to

√
n, where n is the

sample size. Clearly when c is fixed, the estimator is very undersmoothing. Their results actually
provide theoretical support for Li’s [12] empirical study showing that the estimator is not very
sensitive to the number of slices. A relevant work is Zhu et al. [27].

In contrast, as Cook and Critchley [6] and Ye and Weiss [19] pointed out, although SAVE is
more comprehensive than SIR in the sense that the space spanned by the eigenvectors associated
with the non-zero eigenvalues of the SAVE matrix contains the corresponding space based on
SIR, the large and finite sample behavior of the slicing estimator of the SAVE matrix greatly
depend on the choice of the number of slices as revealed by Cook [5], Cook and Critchley [6] and
Zhu et al. [27] empirical studies. This feature was then confirmed by Li and Zhu’s [14] theoretical
results. Specifically, for continuous Y , when c is fixed, the slicing estimator of the SAVE matrix
does not converge. When c → ∞ and c/

√
n → 0 as n → ∞, the convergence rate becomes

1/c, and the asymptotic normality does not hold. This inconsistency/slow convergence rate of the
slicing estimator deteriorates the performance of SAVE. Only when Y is taking finite values, the
root n consistency holds. Li and Zhu [14] proposed a bias corrected method to achieve root n

consistency, but the number of slices needs to be selected carefully. How to determine this number
via a data-driven selection algorithm still remains an open problem.

Clearly, any local smoothing method can be applied to estimate the SIR matrix. Zhu and
Fang [23] used kernel methods to obtain the asymptotic normality of the kernel estimator of SIR
when the number of data points in each window ranges from the rate n1/2 to n(2d−1)/(2d) where
d �2 presents the degree of smoothness for all related functions to be specified in Section A.1.
Note that the kernel estimator can be viewed as a smoothed moving slicing estimator. Li et al.
[13] constructed a moving slicing estimator which is used in the contour regression. However, a
significant difference between the slicing and kernel estimation is: regarding the number of data
points in each slice as a tuning parameter, there is no overlap of ranges for the consistency of the
estimators: 2 to

√
n for slicing estimator and n1/2 to n(2d−1)/2d for the kernel estimator.

The above existing results motivate us to pose the following questions which should be of
interest and importance for SAVE: can a kernel estimator of the SAVE matrix be asymptotically
normal? Compared with the slicing estimation, would it also have a completely different range
for the selection of tuning parameters? In this paper, we prove the kernel estimator for the SAVE
matrix to be root n consistent for a range of bandwidths, which is similar to the result with the
kernel estimator for the SIR matrix.
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Furthermore, an important issue in the area of dimension reduction is the estimation of the
dimension of CDR space. Therefore, another thrust of our article is that we recommend Bayes
information criterion (BIC) to consistently estimate the dimension. The method is a modification
of Zhu et al. [25] method.

The paper is organized as follows. In the next section we present the asymptotic results. In
Section 3, we discuss the dimensionality determination of CDR space. Simulation results and the
illustration of a real application are reported in Section 4, where we also propose a new criterion
to choose bandwidth. The appendix contains the proofs of the theoretical results.

2. Asymptotic behavior of the kernel estimator

Write �X > 0 as the covariance matrix of X. We note that when the standardized variable Z

of X, Z = �
− 1

2
X

(
X − E(X)

)
, is used, CDR space SY |Z = �

1
2
XSY |X (see [4, Chapters 10 and

11]). Throughout this paper, we use Z and Y to estimate SY |Z for simplicity. Denote by f (y), the
density functions of Y and let Z and its independent copies zj be

Z = (Z1, . . . , Zp)T , zj = (z1j , . . . , zpj )
T , j = 1, . . . , n.

We define A2 = AA for squared symmetric matrix A. Then the SAVE matrix is defined as

� = E
(
Ip − Cov(Z|Y )

)2 =
(

Ip − 2E
(
Cov(Z|Y )

)
+ E

(
Cov(Z|Y )

)2
)

.

When SAVE is used to identify the subspace SY |Z , we need to assume the following two conditions:

E(Z|PSY |ZZ) = PSY |ZZ, (2.1)

Cov(Z|PSY |ZZ) = Ip − PSY |Z . (2.2)

where P(·) stands for the projection operator in the standard inner product (see, [4]). Our objective
is then to estimate, based on (zj , yj )’s, the SAVE matrix �, its eigenvalues and the corresponding
eigenvectors.

For notational simplicity, write

Rkl(y) = E(ZkZl |Y = y), Gkl(y) = Rkl(y)f (y), 1�k, l�p,

r(y) = E(Z|Y = y) =
(
E(Z1|Y = y), . . . , E(Zp|Y = y)

)T =:
(
r1(y), . . . , rp(y)

)T

,

g(y) =
(
r1(y)f (y), . . . , rp(y)f (y)

)T =:
(
g1(y), . . . , gp(y)

)T

. (2.3)

The kernel estimators of rk(y) and Rkl(y) are defined by

ĝi (y) = 1

nh

n∑
j=1

zijK
(y − yj

h

)
,

ĝ(y) = (ĝ1(y), . . . , ĝp(y))T , f̂ (y) = 1

nh

n∑
j=1

K
(y − yj

h

)
,

r̂(y) = (r̂1(y), . . . , r̂p(y))T = ĝ(y)/f̂ (y),

Ĝkl(y) = 1

nh

n∑
j=1

zkj zljK
(y − yj

h

)
, R̂kl(y) = Ĝkl(y)/f̂ (y), (2.4)

where h is a bandwidth and K(.) is a kernel function.
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To define a kernel estimator of �, we further introduce some notations. Let �kl = 1 if k = l

and �kl = 0 otherwise. The klth element �kl of � can be written as, by using the notations of (2.3)

�kl = �kl − 2E
(
Rkl(Y ) − rk(Y )rl(Y )

)
+ E

(
p∑

i=1

(
Rki(Y )Ril(Y )

− Rki(Y )ri(Y )rl(Y ) − rk(Y )ri(Y )Ril(Y ) + rk(Y )rl(Y )r2
i (Y )

))
.

Through replacing the unknowns by their kernel estimators, the corresponding estimator �n,kl in
�n can be

�n,kl = �kl − 2

n

n∑
j=1

(
R̂kl(yj ) − r̂k(yj )r̂l(yj )

)
+ 1

n

n∑
j=1

p∑
i=1

(
R̂ki(yj )R̂il(yj )

− R̂ki(yj )r̂i (yj )r̂l(yj ) − r̂k(yj )r̂i (yj )R̂il(yj ) + r̂k(yj )r̂l(yj )r̂
2
i (yj )

)
. (2.5)

To present our main theorems, we adopt vectorization of a matrix as follows. For a symmetric
(p × p) matrix C = (ckl)p×p, let Vech(C) = (c11, . . . , cp1, c22, . . . , cp2, c33, . . . , cpp) be a
p(p + 1)/2 dimensional vector.

We are now in the position to introduce the theoretical results. Define the klth element of matrix
H(Z, Y ) as

Hkl(Z, Y ) = −�kl + �kl − 2
(
ZkZl − Zkrl(Y ) − Zlrk(Y ) + rl(Y )rk(Y )

)

+
p∑

i=1

(
ZkZiRil(Y ) + ZlZiRik(Y ) − Rki(Y )Ril(Y ) − ZlZiri(Y )rk(Y )

−ZiRli(Y )rk(Y ) − ZkRli(Y )ri(Y ) + 2rk(Y )Rli(Y )ri(Y ) − ZkZiri(Y )rl(Y )

−ZiRki(Y )rl(Y ) − ZlRki(Y )ri(Y ) + 2rl(Y )Rki(Y )ri(Y ) + Zkr
2
i (Y )rl(Y )

+ Zlr
2
i (Y )rk(Y ) + 2Ziri(Y )rk(Y )rl(Y ) − 3r2

i (Y )rk(Y )rl(Y )

)
, (2.6)

and for any � ∈ Rp(p+1)/2,

�2
� = �T Cov(Vech(H(Z, Y ))T )�.

The asymptotic normality is stated in the following theorem.

Theorem 1. In addition to (2.1) and (2.2), assume that conditions (1)–(6) in Section A.1 hold.
Then as n → ∞, we have

√
n(�n − �) → H in distribution, (2.7)

where �T Vech(H) is distributed as N(0, �2
�) for any � �= 0.

From Theorem 1, we can derive the asymptotic normality of the eigenvalues and of the cor-
responding eigenvectors by using perturbation theory. The following result is similar to that of
SIR obtained by Zhu and Fang [23]. The proof is also quite similar to that for the SIR matrix
estimator, hence we omit the details.
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Let �1(A)��2(A)� · · · ��p(A)�0 and bi(A) = (b1i (A), . . . , bpi(A))T , i = 1, . . . , p, de-
note, respectively, the eigenvalues and their corresponding eigenvectors of a p × p matrix A.

Theorem 2. In addition to the conditions of Theorem 1, assume that the nonzero �i (�)’s are
distinct. Then for each nonzero eigenvalue �i (�) and the corresponding eigenvector bi(�), we
have

√
n(�i (�n) − �i (�))

= √
nbi(�)T (�n − �)bi(�) + op(

√
n‖�n − �‖)

→ bi(�)T Hbi(�) in distribution, (2.8)

where H is given in Theorem 1, and as n → ∞,
√

n(bi(�n) − bi(�))

= √
n

p∑
l=1,l �=i

bi(�)bi(�)T (�n − �)bi(�)

�j (�) − �l (�)
+ op(

√
n‖�n − �‖)

→
p∑

l=1,l �=i

bi(�)bi(�)T Hbi(�)

�j (�) − �l (�)
in distribution, (2.9)

where ‖�n − �‖ = ∑
1� i,j �p |aij |.

3. Determination of the dimension of SY |Z

The determination of the dimension of SY |Z is another important issue in the area of dimension
reduction. A popular method is the sequential chi-square test method proposed by Li [12]. This
method and some other later developed methods, such as Schott [15], Velilla [18], Bura and
Cook [1], Ferre [9], are particularly useful in SIR. However, most of these methods depend on the
asymptotic normality of the estimators. When SAVE is involved, we either do not have asymptotic
normality if the slicing estimator is employed or cannot obtain an asymptotic distribution of the
estimator with an easily implemented limiting variance if kernel estimator is used. Hence, we
suggest a modified BIC [16] for estimating the dimension of CDR space.

Zhu et al. [25] used a similar algorithm when the dimension of X diverges. The major merit
of this methodology is that only the convergence of the estimator of relevant matrix is enough to
guarantee the consistency of the estimator of the dimension. We note that this is a general method
which can be applied to SAVE. To avoid the inconvenience of selecting the constant in the penalty
term, we suggest here a modified version of Zhu et al. [25] algorithm.

Recall the definition of �i (A) in Section 2. Let � = � + Ip and �n = �n + Ip. Clearly,
�i (�) = �i (�) + 1. Determination of the dimension of SY |Z now becomes the estimation of K ,
the number of the eigenvalues of � being greater than 1. We define

log L(�(�)) = n

2
log |�| − n

2
tr(�−1�n), (3.1)

where �(�) = (�1(�), . . . , �p(�))T . Let �k be the set consisting of all values such that �1(�)��2
(�)� · · · ��k(�) > 1 and �k+1(�) = · · · = �p(�) = 1. In addition, let � denote the number
of �i (�n) > 1. Clearly, � = p�K holds almost surely as n tends to infinity. According to
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Zhu et al. [25], which is based on Zhao et al. [20,21], we can have an explicit equivalent form of
sup�(�)∈�k

log L(�(�)), that is

sup
�(�)∈�k

log L(�(�)) := log Lk = n

2

p∑
i=1+min(�,k)

(log �i (�n) + 1 − �i (�n)).

Differing from Zhu et al. [25], we consider directly �i (�) as the parameters. From the above
presentation, the supremum of log L(�(�)) over �k only involves p−k parameters. Using exactly
the idea of Schwarz’s [16] BIC, we define the criterion by

G(k) = log Lk + (p − k) log n.

The second term of G(k) is a penalty and (p − k) equals to the number of �i (�) needed to be
estimated. Similar to Schwarz [16], we include the factor log n in the penalty. Then the estimator
of K is defined as the maximizer K̂ of G(k) over k ∈ {0, . . . , p − 1}, that is,

G(K̂) = max
0�k �p−1

G(k). (3.2)

Theorem 3. Under the conditions of Theorem 1, K̂ converges to K in probability.

Remark 3.1. Zhu et al. [25] proposed that the penalty can be of the form c/Wn where c is the
number of data points in each slice and Wn is a sequence converging to infinity as n tends to
+∞. However, how to select Wn is of concern. In contrast, we simply use log n as was used by
Schwarz [16] and we will see from the simulation results that our BIC works well.

4. Simulations and an application

4.1. Simulations

In this section, we conduct simulation studies to evaluate the performance of kernel estimation
and to compare it with the existing methods. Also the efficiency of BIC criterion for the deter-
mination of dimension is assessed here. We adopt the criterion proposed by Li [12] to measure
the distance between the estimated CDR space and the true CDR space SY |Z . That is, when the
estimated CDR space is spanned by bi(�n)’s that are associated with the k largest eigenvalues,
we use the squared trace correlation, the average of the squared canonical correlation coefficients
between bT

i (�n)z’s and �T
i z’s which span the true CDR space. See Li [12] for more details. For

ease of presentation, we denote Li’s [12] criterion by R2. In our simulation results, we will report
the median of R2 from a total of 200 Monte Carlo samples.

In this simulation, we considered the following models with structural dimension k = 1, 2.

Model 1: y = (�T x)2 × ε;

Model 2: y = (�T x)2 + ε;

Model 3: y = (�T
1 x)3 + (�T

2 x)2 + ε;

Model 4: y = (�T
1 x)2 + (�T

2 x)2 × ε.

In these models, the covariable x and the error ε are independent, and follow respectively
normal N(0, I10) and N(0, 1), where I10 is the 10 × 10 identity matrix. In the simulations,
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Table 1
The empirical R2 with n = 400

Model 1 Model 2 Model 3 Model 4

SAVE Kernel 0.9106 0.9724 0.9246 0.9496
SAVE Slicing (H = 2) 0.0567 0.9404 0.6498 0.5122
SAVE Slicing (H = 5) 0.9445 0.9481 0.8678 0.8968
SAVE Slicing (H = 10) 0.9282 0.9359 0.0915 0.8797
SAVE Slicing (H = 20) 0.8996 0.9180 0.4322 0.7927
SAVE Slicing (H = 50) 0.7515 0.8203 0.3191 0.5562

� = (1, 1, 0, 0, . . . , 0) for models 1 and 2, and �1 = (1, 0, 0, 0, . . . , 0), �2 = (0, 1, 0, 0, . . . , 0)

for models 3 and 4. The basic experiment was replicated to obtain 200 data sets, each of size
n = 400.

Throughout this section, we used the kernel K(u) = 15/16(1 − u2)2I(|u|�1) to estimate the
SAVE matrix because this commonly used kernel function possesses some optimality proper-
ties [10]. Another important issue in kernel smoothing is the choice of bandwidth h. Note that
undersmoothing is needed. This also occurs in model checking, see Zhu [22] and Zhu and Ng
[26]. Therefore, we have to select a smaller bandwidth than the one that is optimal in the sense
of nonparametric regression estimation. According to Assumption (5), we can select a bandwidth
at the convergence rate n−1/3. Following the idea of Carroll et al. [2] and Stute and Zhu [17], we
propose an algorithm which can be easily implemented. Specifically, we first choose the optimal
bandwidth hopt in terms of the generalized cross-validation (GCV) criterion. It is of the rate n−1/5.

Then, we use hfinal = n− 2
15 hopt as the resulting bandwidth.

For the sake of comparison, we report in Table 1 the values of R2 obtained through both
kernel and slicing estimation of the SAVE matrix. From the simulation results we can see that
the kernel estimator has some advantages. First, the bandwidth in kernel smoothing can be easily
selected using the existing data-driven algorithm whereas there is no good a priori estimator of
H in practice or theory. What makes the slicing estimation worse is the performance of slicing
estimator is sensitive to the number of slices H . Moreover, R2 for slicing estimation has a large
variation for different choices of H . When H is selected properly in model 1, the slicing estimator
can perform well. For example, when H = 5 and 10, the value of R2 is slightly larger than the
corresponding value obtained by the kernel estimator. However, the improvement in such cases is
marginal. The results indicate that for models 2–4, the kernel estimator clearly outperforms the
slicing estimator.

Therefore, when SAVE is used, kernel estimation is worthy of recommendation.
Now let us investigate the efficiency of the BIC criterion for determining the structural di-

mension. The sample size was 400, and the basic experiments were repeated 200 times. The
proportions of decisions for dimension using the kernel and the slicing estimator of the SAVE
matrix are reported in Tables 2 and 3, respectively. From these two tables, we can see that the
slicing estimation tends to overestimate the dimension. Moreover, the number of slices has a
significant impact for estimating dimension. Therefore, kernel estimation based determination
clearly outperforms the slicing estimation based method.

4.2. An application: wheat protein data

Fearn [8] described a data set from an experiment performed to calibrate a near infrared re-
flectance (NIR) instrument for the measurement of the protein content in ground wheat samples.
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Table 2
The frequency of decisions of dimension with n = 400 when the kernel estimator of SAVE is used

D = 0 D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9

Model 1 0.005 0.995 0 0 0 0 0 0 0 0
Model 2 0 1 0 0 0 0 0 0 0 0
Model 3 0 0.01 0.885 0.105 0 0 0 0 0 0
Model 4 0 0.06 0.94 0 0 0 0 0 0 0

D stands for dimension.

Table 3
The frequency of decisions of dimension with n = 400 when the slicing estimator of SAVE is used

D = 0 D = 1 D = 2 D = 3 D = 4 D = 5 D = 6 D = 7 D = 8 D = 9

Model 1
H = 5 0 0.64 0.335 0.025 0 0 0 0 0 0
H = 6 0 0.23 0.55 0.195 0.025 0 0 0 0 0
H = 10 0 0.01 0.075 0.48 0.36 0.07 0.005 0 0 0
H = 20 0 0 0 0.015 0.085 0.485 0.37 0.045 0 0

Model 2
H = 5 0 0.675 0.305 0.02 0 0 0 0 0 0
H = 6 0 0.255 0.56 0.18 0.005 0 0 0 0 0
H = 10 0 0.005 0.08 0.46 0.41 0.045 0 0 0 0
H = 20 0 0 0 0.02 0.225 0.45 0.26 0.045 0 0

Model 3
H = 5 0 0.045 0.815 0.14 0 0 0 0 0 0
H = 6 0 0 0.51 0.425 0.06 0.005 0 0 0 0
H = 10 0 0 0.04 0.295 0.575 0.09 0 0 0 0
H = 20 0 0 0 0.02 0.12 0.48 0.34 0.04 0 0

Model 4
H = 5 0 0 0.865 0.135 0 0 0 0 0 0
H = 6 0 0.01 0.465 0.475 0.05 0 0 0 0 0
H = 10 0 0 0.065 0.385 0.42 0.125 0.005 0 0 0
H = 20 0 0 0 0.01 0.135 0.5 0.315 0.04 0 0

The protein content measurements of each sample (y in percent) were made using the standard
Kjeldahl method, and the six predictors, L1, . . . , L6 were measurements on log(1/reflectance) of
NIR radiation by the wheat samples of six wavelengths in the range 1680–2310 nm. The calibra-
tion is used to find a linear combination of the log values of reflectance which predicts protein
content; the coefficients may then be programmed into the instrument so that the protein content
of future unknown samples can be read directly. See also the description of Cook [4]. In the
analysis, 50 samples of ground wheat were used. The problem here is to determine the structural
dimension of y given the six predictors. Cook [4] used 2D added-variable plots and discovered
that case 47 and case 24 stands apart from the empirical distribution of the remaining predictor
values, and hence these cases are deleted. We now use the other 48 samples in the following
analysis.

Cook [4] stated that there is strong collinearity between predictors. Therefore, the linear com-
bination of L3 and L4, namely, L34 = 0.856L3 − 0.517L4 was used as a single predictor. We
follow Cook’s [4] suggestion and use L34, instead of L3 and L4, in our analysis.
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Table 4
The structural dimension K determined by BIC criterion

Kernel Estimation Slicing Estimation
bandwidth dim = K H(c) dim = K

H = 24(c = 2) K = 4
H = 16(c = 3) K = 4

hfinal = 1.187 K = 1 H = 12(c = 4) K = 1
H = 8(c = 6) K = 1
H = 4(c = 12) K = 1

Our proposed BIC is used to determine the structural dimension. Using GCV, we can select an

optimal bandwidth hopt and the final bandwidth hfinal = n
− 2

15 hopt = 1.187. By kernel estimation
for SAVE, the dimension of CDR space is 1. For slicing estimation, we considered several values
H of the number of slices. We report the dimension determined by BIC in Table 4 where c is the
number of points in each slice.

These results indicate that kernel estimation can be conveniently used and slicing estimation
performs equally well when H is small. When H becomes comparatively large, slicing method
cannot obtain a good estimator of K . This also confirms the theoretical conclusion obtained by
Li and Zhu [14].

A. Appendix

A.1. Assumptions

The following conditions are required for Theorems 1 and 2.

(1) All gk(y) = rk(y)f (y), Gkl(y) = Rkl(y)f (y) and f (y) are d-times differentiable and
their derivatives satisfy the following condition: letting H1(y) stand for f (y), gk(y), Gkl(y),
respectively, there exists a neighborhood of the origin, say U , and a constant c > 0 such that,
for any u ∈ U ,

|H(d−1)
1 (y + u) − H

(d−1)
1 (y)|�c|u|, sup

y
|H(1)

1 (y)|�c.

The constant c can take different value at different places (independent of n) throughout this
section.

(2) For each pair 1�k, l�d and for any u ∈ U , |H(d−1)
2 (y+u)−H

(d−1)
2 (y)|�c|u| where H2(y)

stands for, respectively,Rkl(y), rl(y), rk(y)rl(y),Rki(y)Ril(y),Rkl(y)rl(y),Rkl(y)rl(y)ri(y)

and rk(y)rl(y)ri(y) for each pair 1�k, l, i�d and for any u ∈ U .

(3) E|ZkZl |4 < ∞, k, l = 1 . . . , d.

(4) The kernel function K(.) has the following properties:
(a) the support of K(.) is the interval [−1, 1];

(b) K(.) is symmetric about 0;

(c)
∫ 1
−1 K(u) du = 1,

∫ 1
−1 uiK(u) du = 0, i = 1, . . . , d − 1 and

∫ 1
−1 udK(u) du < ∞;

(d) R2(K) = ∫ 1
−1 K2(u) du < ∞.
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(5) As n → ∞, h ∼ n−c1 with a positive number c1 satisfying 1
2d

< c1 < 1
2 , the notation “∼”

means that h and n−c1 have the same convergence order.
(6) infy f (y)�c > 0 for some positive constant c.

Remark A.1. Conditions (1) and (2) are concerned with the smoothness of the density function
of Y and regression curve R(y). These conditions are commonly used. Condition (3) is necessary
for the asymptotic normality of �n. Condition (4) is for the use of dth order kernel. Condition
(5) shows the range of bandwidths for asymptotic normality. Clearly, it is fairly wide, but an

undersmoothing is needed because the optimal bandwidth O(n
− 1

2d+1 ) is not in this range. On
the other hand, since hn1/2 → ∞ as n → ∞, thus the number of data points within each slice
cannot be too small. Therefore, compared with the results of Li and Zhu [14], this confirms the
significant difference between the slicing and kernel estimation in this circumstance.

A.2. Lemmas

Since the proof of Theorem 1 is rather long, we split the proof into several lemmas. The
following lemmas present the results that the elements of �n can be written as U-statistics and
then can be approximated by sums of i.i.d. random variables.

Lemma A.1. Suppose conditions (1), (4)–(6) are satisfied. Then

1√
n

n∑
j=1

(
ĥ1(yj ) − h1(yj )

)(
ĥ2(yj ) − h2(yj )

)/
f̂ 2(yj ) = op(1),

where both h1(.) and h2(.) can be f (.), gk(.) and Gkl(.) for each pair 1�k, l�q.

Lemma A.2. Suppose conditions (1)–(6) are satisfied. Then

1√
n

(
n∑

j=1

H(yj )f̂ (yj ) −
n∑

j=1

H(yj )f (yj )

)

= 1√
n

n∑
j=1

(
H(yj )f (yj ) − E(H(Y )f (Y ))

)
+ op(1),

where H(.) can be Rkl(.)
f (.)

, rk(.)rl (.)
f (.)

, Rki(.)Ril (.)
f (.)

, rk(.)rl (.)ri (.)
f (.)

and Rkl(.)rk(.)rl (.)
f (.)

.

Lemma A.3. Suppose conditions (1)–(6) are satisfied. Then

1√
n

n∑
j=1

(
H(yj )ĝk(yj ) − H(yj )gk(yj )

)

= 1√
n

n∑
j=1

(
zkjH(yj )f (yj ) − EH(Y )gk(Y )

)
+ op(1),

where H(.) can be rl (.)
f (.)

rl (.)rk(.)
f (.)

, rl (.)rk(.)ri (.)
f (.)

and Rki(.)rl (.)
f (.)

.
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Lemma A.4. Suppose conditions (1)–(6) are satisfied. Then

1√
n

n∑
j=1

(
H(yj )Ĝkl(yj ) − H(yj )Gkl(yj )

)

= 1√
n

n∑
j=1

(
zkj zljH(yj )f (yj ) − EH(Y )Gkl(Y )

)
+ op(1),

where H(.) can be 1
f (.)

, Rkl(.)
f (.)

and rk(.)rl (.)
f (.)

.

The proofs are left to Section A.4.

A.3. Proofs of the theorems

Proof of Theorem 1. We need only to deal with the klth element �n,kl of �n. The proof has been
divided into five steps. In each step, our major target is to approximate each term by a sum of i.i.d.

random variables. First recall the definitions of Rkl(·) = Gkl(·)/f (·) and R̂kl(·) = Ĝkl(·)/f̂ (·)
defined in (2.3). Looking at the formula of �n,kl of (2.5), in the following we deal with the
involved estimators to derive asymptotic linear representations in (2.6). Recall the definition of
the conditional expectation in (2.3). Without confusion, we write E(·|Y = y) = E(·|y) and
Ê(·|Y = y) = Ê(·|y) throughout this proof. The proof can be done through the asymptotic linear
representations of U-statistics in the lemmas.

Step 1: By Lemma A.1, we have

1√
n

n∑
j=1

R̂kl(yj )

= 1√
n

n∑
j=1

(
Ĝkl(yj ) − Gkl(yj ) + Gkl(yj )

)(f (yj ) − f̂ (yj )

f (yj )f̂ (yj )
+ 1

f (yj )

)

= 1√
n

n∑
j=1

(
Ĝkl(yj ) − Gkl(yj )

f (yj )
+ Gkl(yj )

f (yj )
+

Gkl(yj )
(
f (yj ) − f̂ (yj )

)
f (yj )2

)
+ op(1).

Therefore, by Lemmas A.2 and A.4

1√
n

n∑
j=1

(
R̂kl(yj ) − ERkl(yj )

)

= 1√
n

n∑
j=1

(
Ĝkl(yj ) − Gkl(yj )

f (yj )
+
(
Rkl(yj ) − ERkl(yj )

)

+
Gkl(yj )

(
f (yj ) − f̂ (yj )

)
f (yj )2

)
+ op(1)

= 1√
n

n∑
j=1

(
zkj zlj − ERkl(Y )

)
+ op(1). (A.1)
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Step 2: By Lemma A.1, we have

1√
n

n∑
j=1

r̂k(yj )r̂l(yj )

= 1√
n

n∑
j=1

(
ĝk(yj ) − gk(yj ) + gk(yj )

)(
ĝl(yj ) − gl(yj ) + gl(yj )

)

×
((

f (yj ) − f̂ (yj )
)2 + 2f (yj )

(
f (yj ) − f̂ (yj )

)
f 2(yj )f̂ 2(yj )

+ 1

f 2(yj )

)

= 1√
n

n∑
j=1

(
ĝk(yj ) − gk(yj ) + gk(yj )

)(
ĝl(yj ) − gl(yj ) + gl(yj )

)

×
(

2f (yj )
(
f (yj ) − f̂ (yj )

)
f 4(yj )

+ 1

f 2(yj )

)
+ op(1)

= 1√
n

n∑
j=1

(−2gk(yj )gl(yj )
(
f̂ (yj ) − f (yj )

)
f 3(yj )

+
gl(yj )

(
ĝk(yj ) − gk(yj )

)
f 2(yj )

+
gk(yj )

(
ĝl(yj ) − gl(yj )

)
f 2(yj )

+ gk(yj )gl(yj )

f 2(yj )

)
+ op(1).

Lemmas A.2 and A.3 imply

1√
n

n∑
j=1

(
r̂k(yj )r̂l(yj ) − Erk(Y )rl(Y )

)

= 1√
n

n∑
j=1

(
zkj rl(yj ) + zlj rk(yj ) − rk(yj )rl(yj ) − Erk(Y )rl(Y )

)
+ op(1). (A.2)

Step 3: Using Lemma A.1, we have

1√
n

n∑
j=1

p∑
i=1

R̂ki(yj )R̂il(yj ) = 1√
n

n∑
j=1

p∑
i=1

(
R̂ki(yj ) − Rki(yj )

)
Ril(yj )

+ 1√
n

n∑
j=1

p∑
i=1

(
R̂il(yj ) − Ril(yj )

)
Rki(yj )

+ 1√
n

n∑
j=1

p∑
i=1

Rki(yj )Ril(yj ) + op(1).
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Therefore, Lemma A.4 yields

1√
n

n∑
j=1

p∑
i=1

(
R̂ki(yj )R̂il(yj ) − E

(
Rki(Y )Ril(Y )

))

= 1√
n

n∑
j=1

p∑
i=1

(
zkj zijRil(yj ) + zlj zijRik(yj ) − Rki(yj )Ril(yj )

− E
(
Rki(Y )Ril(Y )

))
+ op(1). (A.3)

Step 4: Use Lemma A.1 again to obtain

1√
n

n∑
j=1

p∑
i=1

(
r̂2
i (yj )r̂k(yj )r̂l(yj )

)

= 1√
n

n∑
j=1

p∑
i=1

(
r2
i (yj )rl(yj )

(
r̂k(yj )−rk(yj )

)
+2rk(yj )rl(yj )ri(yj )

(
r̂i (yj )−ri(yj )

)

+ r2
i (yj )rk(yj )

(
r̂l (yj ) − rl(yj )

)
+ r2

i (yj )rk(yj )rl(yj )

)
+ op(1).

By Lemmas A.2 and A.3, we have

1√
n

n∑
j=1

p∑
i=1

(
r̂2
i (yj )r̂k(yj )r̂l(yj ) − E

(
r2
i (Y )rk(Y )rl(Y )

))

= 1√
n

n∑
j=1

p∑
i=1

(
zkj r

2
i (yj )rl(yj ) + zlj r

2
i (yj )rk(yj ) + 2zij ri(yj )rk(yj )rl(yj )

− 3r2
i (yj )rk(yj )rl(yj ) − E

(
r2
i (Y )rk(Y )rl(Y )

))
+ op(1). (A.4)

Step 5: Invoking Lemma A.1 again, we derive

1√
n

n∑
j=1

p∑
i=1

R̂ki(yj )r̂i (yj )r̂l(yj )

= 1√
n

n∑
j=1

p∑
i=1

((
R̂ki(yj ) − Rki(yj )

)
ri(yj )rl(yj ) +

(
r̂i (yj ) − ri(yj )

)
Rki(yj )rl(yj )

+
(
r̂l (yj ) − rl(yj )

)
ri(yj )Rki(yj ) + rl(yj )ri(yj )Rki(yj )

)
.
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Therefore, by Lemmas A.2–A.4, we achieve

1√
n

n∑
j=1

p∑
i=1

(
R̂ki(yj )r̂i (yj )r̂l(yj ) − E

(
rl(Y )Rki(Y )ri(Y )

))

= 1√
n

n∑
j=1

p∑
i=1

(
zkj zij ri(yj )rl(yj ) + zijRki(yj )rl(yj ) + zljRki(yj )ri(yj )

− 2rl(yj )Rki(yj )ri(yj ) − E
(
rl(Y )Rki(Y )ri(Y )

))
+ op(1). (A.5)

Using the similar arguments, we have

1√
n

n∑
j=1

p∑
i=1

(
R̂li (yj )r̂i (yj )r̂k(yj ) − E

(
rk(Y )Rli(Y )ri(Y )

))

= 1√
n

n∑
j=1

p∑
i=1

(
zlj zij ri(yj )rk(yj ) + zijRli(yj )rk(yj ) + zkjRli(yj )ri(yj )

− 2rk(yj )Rli(yj )ri(yj ) − E
(
rk(Y )Rli(Y )ri(Y )

))
+ op(1). (A.6)

Finally, by combining the results of (A.1)–(A.6), we have proved that �n,kl can be written
asymptotically as a sum of i.i.d. random variables. Hence, Central Limit Theorem yields the
desired result with the variance of (2.6). �

Proof of Theorem 3. Let K be the true value of the dimension of �. Note that

G(K) − G(k) = log LK − log Lk − (K − k) log n.

With probability one, we have that from Theorem 2, in probability for large n, �i (�n) > 1, i =
1, . . . , K and min(�, K) = K .

If k < K , then min(�, k) = k. Thus for large n,

log LK − log Lk = −n

2

K∑
i=k+1

(log �i (�n) + 1 − �i (�n)) = n

2
Wn(K, k),

where

Wn(K, k) = −
K∑

i=k+1

(log �i (�n) + 1 − �i (�n)).

We have, for large n,

lim
n→∞ Wn(K, k) = W(K, k) ≡ −

K∑
i=k+1

(log �i (�n) + 1 − �i (�n)) > 0.

Hence, in probability, we have that for large n

G(K) − G(k) > 1
4nW(K, k) − (K − k) log n > 0. (A.7)
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If k > K , we note that for i = K + 1, . . . , k, �i (�n) − 1 = Op(1/
√

n), and log �i (�n) +
(1 − �i (�n)) = −(1 − �i (�n))

2/2 + op(1/n) = Op(1/n). Furthermore, K − k < 0. Then in
probability

G(K) − G(k) > 0. (A.8)

It follows from (A.7) and (A.8) that K̂ → K . �

A.4. Proofs of the lemmas

Proof of Lemma A.1. We only need to show this lemma when h1(.) and h2(.) are the same
because this lemma can be proven easily by the Cauchy inequality when h1(.) and h2(.) are
different. Also we only prove the case with h1(.) = h1(.) = gk(.) because the proof for other

cases are essentially the same. First of all, we show that 1√
n

∑n
j=1

(
ĝk(yj ) − gk(yj )

)2
is op(1)

by rewriting it as a U-statistic. The method is exactly identical to the one developed by Zhu and
Fang [23] to prove their results. The following is an outline of the proof.

First, we can easily obtain that, invoking the conditions,

1√
n

n∑
j=1

ĝ2
k (yj ) =

√
n

n3

n∑
j=1

n∑
i=1

n∑
l=1

zkizkl

1

h2 K
(yj − yi

h

)
K
(yj − yl

h

)

=
√

n

C3
n

∑
i<j<l

zkizkl

1

h2 K
(yj − yi

h

)
K
(yj − yl

h

)
+ op(1)

=:
√

n

C3
n

∑
i<j<l

h(zki, zkl, zkj , yi, yj , yk) + op(1)

=: √nUn1 + op(1).

Similarly, we can derive that

1√
n

n∑
j=1

gk(yj )ĝk(yj ) =: √
nUn2 + op(1).

Furthermore, by the properties of the conditional expectation, it is easy to derive that

√
nE(Un1) = √

nE

(
Zk2Zk3

1

h2 K

(
Y1 − Y2

h

)
K

(
Y1 − Y3

h

))

= √
nE

(
E

(
Zk2Zk3

1

h2 K

(
y1 − Y2

h

)
K

(
y1 − Y3

h

)∣∣∣∣∣ y1

))

= √
nE

(
E

(
1

h
K

(
y1 − Y2

h

)
rk(Y2)

∣∣∣∣∣ y1

)
E

(
1

h
K

(
y1 − Y3

h

)
rk(Y3)

∣∣∣∣∣ y1

))

= √
nE

(∫
1

h
K

(
y1 − y2

h

)
rk(y2)f (y2) dy2

∫
1

h
K

(
y1 − y3

h

)
rk(y3)f (y3) dy3

)

= √
nE

(
g2

k (Y1) + O(hd)

)
= √

nE

(
g2

k (Y1)

)
+ o(1).
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Also we have

√
nE(Un2) = √

nE

(
Zk2

1

h
K

(
Y1 − Y2

h

)
gk(Y1)

)

= √
n

∫
1

h
K
(y1 − y2

h

)
rk(y2)gk(y1)f (y2)f (y1) dy2 dy1

= √
nE
(
g2

k (Y1)
)

+ O(
√

nhd) = √
nE
(
g2

k (Y1)
)

+ o(1).

Therefore, we have

E

(
1√
n

n∑
j=1

(
ĝk(Yj ) − gk(Yj )

)2
)

= E

(
1√
n

n∑
j=1

(
ĝ2

k (Yj ) − 2ĝk(Yj )gk(Yj ) + g2
k (Yj )

))

= √
nE(Un1) − 2

√
nE(Un2) + E

(
1√
n

n∑
j=1

g2
k (Yj )

)
+ o(1)

= o(1).

Since f̂ (yj ) is uniformly consistent to f (yj ) over j , by condition 6 and Markov inequality, we
obtain

1√
n

n∑
j=1

(
ĝk(yj ) − gk(yj )

f̂ (yj )

)2

= 1√
n

n∑
j=1

(
ĝk(yj ) − gk(yj )

f (yj )

)2

+ op(1)

� 1√
n

n∑
j=1

b−2
(
ĝk(yj ) − gk(yj )

)2 + op(1) = op(1).

The proof is concluded. �

Since the proof of Lemmas A.2–A.4 are essentially the same, we only prove Lemma A.3 here.

Proof of Lemma A.3. We first write 1√
n

∑n
j=1 H(yj )ĝk(yj ) as a U-statistic:

1√
n

n∑
j=1

H(yj )ĝk(yj )

= 1

n3/2

n∑
i=1

n∑
j=1

zkiH(yj )
1

h
K
(yj − yi

h

)

= √
n

1

C2
n

∑
i<j

zkiH(yj )
1

h
K
(yj − yi

h

)
+ zkjH(yi)

1

h
K
(yj − yi

h

)
2

+ op(1)

=: √
n

1

C2
n

∑
i<j

uh(zki, yi, zkj , yj ) + op(1) = √
nUn + op(1), (A.9)
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where op(1) is the sum of all terms with i = j . To prove this lemma, we then show that Un can
be approximated by its projection

Ûn =
n∑

j=1

E(Un|zkj , yj ) − (n − 1)Euh(Zk1, Y1, Zk2, Y2), (A.10)

where uh(.) is the kernel of the U-statistic Un. Note that Ûn is not a sum of i.i.d. random variables.
In the following we prove that Ûn can be asymptotically equivalent to a sum of i.i.d. random
variables. To compute EUn first, we can obtain that

EUn = Euh(Zk1, Y1; Zk2, Y2) = E

(
Zk1H(Y2)

1

h
K

(
Y2 − Y1

h

))

= E

(
H(Y2)

1

h
K

(
Y2 − Y1

h

)
rk(Y1)

)
= E

(
H(Y)gk(Y )

)
+ O(hd).

Note that

u1(zk1, y1) =: E
(
uh(zk1, y1; Zk2, Y2)|zk1, y1

)
= zk1

2

∫
H(y2)

1

h
K
(y2 − y1

h

)
f (y2) dy2

+E

(
H(y1)

2

1

h
K

(
y2 − y1

h

)
rk(y2)

∣∣∣∣∣ zk1, y1

)

= zk1

2

∫
H(y1 + ht)K(t)f (y1 + ht) dt + H(y1)

2

∫
K(t)gk(y1 + ht) dt

= zk1H(y1)f (y1) + H(y1)gk(y1)

2
+ Op(hd).

Thus, the centered conditional expectation is as follows:

ũh1(zk1, y1) = E
(
uh(zk1, y1; Zk2, Y2)|zk1, y1

)
− E

(
uh(Zk1, Y1; Zk2, Y2)

)
= zk1H(y1)f (y1) + H(y1)gk(y1)

2
− E

(
H(Y)gk(Y )

)
+ Op(hd).

From the above, we have

E(Un|zk1, y1) = 1

n(n − 1)

∑
i �=j

E
(
uh(Zki, Zkj , Yi, Yj )|zk1, y1

)

= 1

n(n − 1)

( ∑
i �=j,i or j �=1

E
(
uh(Zki, Zkj , Yi, Yj )|zk1, y1

)

+
∑

i �=j,i or j=1

E
(
uh(Zki, Zkj , Yi, Yj )|zk1, y1

))

= 1

n(n − 1)

( ∑
i �=j,i or j �=1

Euh(Zki, Zkj , Yi, Yj )

+
∑

i �=j,i or j=1

E
(
uh(Zki, Zkj , Yi, Yj )|zk1, y1

))
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= 1

n(n − 1)

(
(n − 1)(n − 2)Euh(Zk1, Zk2, Y1, Y2)

+ 2(n − 1)E
(
uh(zk1, Zk2, y1, Y2)|zk1, y1

))

= n − 2

n
Euh(Zk1, Zk2, Y1, Y2) + 2

n
E
(
uh(zk1, Zk2, y1, Y2)|zk1, y1

)
.

We will see that the projection Ûn of the U -statistic Un can be approximated as the sum of a
sequence of i.i.d random variables as follows:

Ûn − Euh(Zk1, Zk2, Y1, Y2)

=
n∑

j=1

E(Un|zkj , yj ) − (n − 1)Euh(Zk1, Zk2, Y1, Y2) − Euh(Zk1, Zk2, Y1, Y2)

=2

n

n∑
j=1

E
(
uh(Zki, zkj , Yi, yj )|zkj , yj

)
−Euh(Zk1, Zk2, Y1, Y2)

−Euh(Zk1, Zk2, Y1, Y2)

= 2

n

n∑
j=1

(
E
(
uh(Zki, zkj , Yi, yj )|zkj , yj

)
− Euh(Zk1, Zk2, Y1, Y2)

)

= 2

n

n∑
j=1

(
uh1(zkj , yj ) − Euh(Zk1, Zk2, Y1, Y2)

)
= 2

n

n∑
j=1

ũh1(zkj , yj )

= 2

n

n∑
j=1

(
zkjH(yj )f (yj ) + H(yj )gk(yj )

2
− E

(
H(Y)gk(Y )

))
+ Op(hd).

We have obtained the simplified form of Ûn.
In the following three steps we will verify that Un can be approximated by its projection Ûn at

a rate 1/
√

nh, that is,
√

n(Ûn − Un) = Op(1/
√

nh).

Step L1: E
(
uh(Zk1, Y1, Zk2, Y2)

)2 = O(1/h) where uh(·) is defined in (A.10).

Clearly

E
(
uh(Zk1, Y1, Zk2, Y2)

)2

�2E

(
Z2

k1H
2(Y2)

1

h2 K2

(
Y2 − Y1

h

))
+ 2E

(
Z2

k2H
2(Y1)

1

h2 K2

(
Y2 − Y1

h

))
.

It is easy to see that

E

(
Z2

k1H
2(Y2)

1

h2 K2

(
Y2 − Y1

h

))
= E

(
Rkk(Y1)H

2(Y2)
1

h2 K2

(
Y2 − Y1

h

))

=
∫

Rkk(y1)H
2(y2)

1

h2 K2
(y2 − y1

h

)
f (y1)f (y2) dy1 dy2
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=
∫

Gkk(y1)H
2(y2)

1

h2 K2
(y2 − y1

h

)
f (y2) dy1 dy2

=
∫

Gkk(y2 − ht)H 2(y2)
1

h
K2(t)f (y2) dt dy2

=
∫

Gkk(y2)H
2(y2)

1

h
K2(t)f (y2) dt dy2 + O(1)

= R2(K)

h
E
(
Z2

kH
2(Y )f (Y )

)
+ O(1) = O(1/h),

and

E

(
Z2

k2H
2(Y1)

1

h2 K2

(
Y2 − Y1

h

))
= R2(K)

h
E
(
Z2

kH
2(Y )f (Y )

)
+ O(1) = O(1/h).

This concludes the proof. �
Together with Step L1 and the computation of E(Un) right below (A.11), we have

�2 := var
(
uh(Zk1, Y1; Zk2, Y2)

)
= O

(1

h

)
.

Step L2: Un − Ûn is a U-statistic. It can be obtained as

Un − Ûn = Un −
n∑

j0=1

E(Un|zkj0 , yj0) + (n − 1)Euh(Zk1, Y1, Zk2, Y2)

= 1

n(n − 1)

∑
i �=j

uh(zki, yi, zkj , yj )

−
n∑

j0=1

E

(
1

n(n − 1)

∑
i �=j

uh(zki, yi, zkj , yj )|zkj0 , yj0

)

+(n − 1)Euh(Zk1, Y1, Zk2, Y2)

= 1

n(n − 1)

∑
i �=j

uh(zki, yi, zkj , yj )

− 1

n(n − 1)

∑
i �=j

n∑
j0=1

E
(
uh(Zki, Yi, Zkj , Yj )|zkj0 , yj0

)
+(n − 1)Euh(Zk1, Y1, Zk2, Y2)

= 1

n(n − 1)

∑
i �=j

uh(zki, yi, zkj , yj )

− 1

n(n − 1)

∑
i �=j

(
E
(
uh(zki, yi, Zkj , Yj )|zki, yi

)

+ E
(
uh(Zki, Yi, zkj , yj )|zkj , yj

)
+ (n − 2)Euh(Zk1, Y1, Zk2, Y2)

)

+(n − 1)Euh(Zki, Yi, Zkj , Yj )
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= 1

n(n − 1)

∑
i �=j

uh(zki, yi, zkj , yj ) − 1

n(n − 1)

∑
i �=j

(
uh1(zki, yi)

+ uh1(zkj , yj )
)

+ Euh(Zki, Yi, Zkj , Yj )

= 1

n(n − 1)

∑
i �=j

(
uh(zki, yi, zkj , yj ) − uh1(zki, yi) − uh1(zkj , yj )

)

+Euh(Zki, Yi, Zkj , Yj )

= 1

n(n − 1)

∑
i �=j

H(zki, yi, zkj , yj ) = 1

C2
n

∑
i<j

H(zki, yi, zkj , yj ).

Clearly, H(·) is a symmetric kernel of a U-Statistic. �
Step L3:

√
n(Un − Ûn) = Op( 1√

nh
). For this, we only need to compute the convergence rate

of E(Un − Ûn)
2.

We can easily obtain that E
(
H(Zk1, Y1, Zk2, Y2)

)
=0. Moreover, we can prove that

E(H |zkj , yj )=0 for any j . Actually

H1(zk1, y1) =: E(H |zk1, y1)

= E
(
uh(zk1, y1, Zk2, Y2)|zk1, y1]

)
− E

(
uh1(zk1, y1)|zk1, y1

)
−E

(
uh1(Zk2, Y2)|zk1, y1

)
+ E

(
uh(Zk1, Y1, Zk2, Y2)

)
= uh1(zk1, y1) − uh1(zk1, y1) − E

(
uh1(Zk2, Y2)|zk1, y1

)
+Euh(Zk1, Y1, Zk2, Y2)

= −Euh1(Zk2, Y2) + Euh(Zk1, Y1, Zk2, Y2) = 0.

These imply that

E(
√

n(Un − Ûn))
2 = nV ar(Un − Ûn) =

2E
(
H(Zk1, Y1, Zk2, Y2)

)2

n − 1
.

The conclusion can be achieved if we can prove that E
(
H(Zk1, Y1, Zk2, Y2)

)2 = O( 1
h
). We can

obtain this through the following calculation as:

E
(
H(Zk1, Y1, Zk2, Y2)

)2

= E
(
uh(Zk1, Y1, Zk2, Y2) − uh1(Zk1, Y1) − uh1(Zk2, Y2) + Euh(Zk1, Y1, Zk2, Y2)

)2

= Eu2
h(Zk1, Y1, Zk2, Y2)+Eu2

h1(Zk1, Y1)+Eu2
h1(Zk2, Y2)+E2uh(Zk1, Y1, Zk2, Y2)

−2E
(
uh(Zk1, Y1, Zk2, Y2)uh1(Zk1, Y1)

)
− 2E

(
uh(Zk1, Y1, Zk2, Y2)uh1(Zk2, Y2)

)
+2E2uh(Zk1, Y1, Zk2, Y2) + 2E

(
uh1(Zk1, Y1)u1(Zk2, Y2)

)
−2Euh1(Zk1, Y1)Euh(Zk1, Y1, Zk2, Y2) − 2Euh1(Zk2, Y2)Euh(Zk1, Y1, Zk2, Y2)
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= Eu2
h(Zk1, Y1, Zk2, Y2)+Eu2

h1(Zk1, Y1)+Eu2
h1(Zk2, Y2)+E2uh(Zk1, Y1, Zk2, Y2)

−2Eu2
h1(Zk1, Y1) − 2Eu2

h1(Zk2, Y2) + 2E2uh(Zk1, Y1, Zk2, Y2)

+2E2uh1(Zk1, Y1) − 4Euh1(Zk1, Y1)Euh(Zk1, Y1, Zk2, Y2)

= Eu2
h(Zk1, Y1, Zk2, Y2) + E2uh(Zk1, Y1, Zk2, Y2) − 2Eu2

h1(Zk1, Y1) = O
(1

h

)
.

From the above results, we have that, together with (A.10),

1√
n

n∑
j=1

H(yj )ĝk(yj )

= √
nUn + op(1) = √

nÛn + op(1)

= 2√
n

n∑
j0=1

E
(
uh(Zki, Zkj , Yi, Yj )|zkj0 , yj0

)
− √

nE
(
uh(Zki, Zkj , Yi, Yj )

)
+ op(1)

= 1√
n

n∑
j=1

(
zkjH(yj )f (yj ) + H(yj )gk(yj )

)
− √

nE(H(Y )gk(Y )) + op(1).

Then

1√
n

n∑
j=1

(
H(yj )ĝk(yj ) − H(yj )gk(yj )

)

= 1√
n

n∑
j=1

(
zkjH(yj )f (yj ) − EH(Y )gk(Y )

)
+ op(1).

The proof is finished. �
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